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Abstract

Recent advances in coarse-grained normal mode analysis methods make possible the large-scale prediction
of the effect of mutations on protein stability and dynamics as well as the generation of biologically relevant
conformational ensembles. Given the interplay between flexibility and enzymatic activity, the combined
analysis of stability and dynamics using the Elastic Network Contact Model (ENCoM) method has ample
applications in protein engineering in industrial and medical applications such as in computational antibody
design. Here, we present a detailed tutorial on how to perform such calculations using ENCoM.
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1 Introduction

Protein engineering aims at modulating the physico-chemical and
biological properties of proteins through chemical modifications
for industrial and medical applications. Such modifications include
derivatizing surface residues and the introduction of mutations.
Industrial applications often require mutations that confer
increased efficiency in conditions drastically different than physio-
logical as well as improved resistance to denaturation [1]. In a
visionary article in 1983, Kevin Ulmer proposed that the integra-
tion of experimental approaches in protein chemistry, X-ray crystal-
lography, and computer modeling held the key to understand and
engineer protein structure and function [2]. Over 30 years later,
much progress has been made but we are far from truly under-
standing protein function and structure to the point where we can
engineer de novo functions. Traditionally, protein engineering
involved structure-guided design through site-directed mutagene-
sis. While this approach is still used [3, 4], new methodologies such
as directed evolution are commonly used today. Directed evolution
is an experimental approach mimicking biological evolution where

Ilan Samish (ed.), Computational Protein Design, Methods in Molecular Biology, vol. 1529,
DOI 10.1007/978-1-4939-6637-0_9, © Springer Science+Business Media New York 2017

203



a large number of random mutants are produced and evolutionary
pressure is applied in which successive rounds of selection are used
to favor the emergence of desired phenotypes [5]. In that respect
and depending on the goal, promiscuity in terms of binding or
catalysis often simplifies the engineering task [6]. Otherwise,
directed evolution can be sensitive to local minima of the fitness
landscape [7, 8]. The late physicist Richard Feynman stated “what I
cannot create, I do not understand.” Directed evolution shows that
it is possible to create new proteins without full understanding.
However, in the spirit of Ulmer, the true potential of protein
engineering will be achieved once we understand enough of the
principles underlying protein structure and function to perform ab
initio protein design.

Computational approaches have been used to identify muta-
tions that change protein affinity [9], function [10], and stability
[11]. However, most computational methods that focus on the
impact of mutations on protein stability are biased toward predict-
ing destabilizing mutations. This bias comes at times as an artifact
of machine learning, but it can also be caused by the inherent
difficulty of modeling stabilizing mutations. Therefore, most
computational methods currently available fail to correctly predict
stabilizing mutations [12, 13]. Another important point to
consider is that changes in thermodynamic stability may have a
detrimental effect on enzymatic activity [14–19]. A striking
example comes from the comparison of mesophilic enzymes with
their more stable thermophilic counterparts that exhibit lower
enzyme efficiency at room temperatures [20]. This loss of efficiency
is often associated with a rigidification of the structure [21, 22].
More generally, dynamics affects molecular recognition [9, 23–26]
and catalytic rates [27, 28]. It is especially true for antibodies [29]
where a rigidification of the complementarity determining region
(CDR) is observed during the maturation process [30] and crucial
to obtain high affinity specific molecules [31]. Allosteric mutations
that improve binding affinity [32] in therapeutic antibodies high-
light the importance of assessing the impact of mutations on
protein dynamics. Finally, describing a protein as the conforma-
tional ensemble rather than a single structure has been shown to
improve the prediction of the effect of mutations [33, 34] and
improved the outcome of protein design protocols [35].

The evaluation of dynamic properties of proteins in a high-
throughput context is not a trivial task. Experimental procedures
(NMR or crystallographic b-factors) can be time-consuming and
despite tremendous advances in molecular dynamic simulations, the
ability to assess the effect of a mutation on dynamic properties of
proteins is still computationally demanding, particularly for the long
timescales associated with protein function [36]. Thus, evaluating
several hundredmutants would seem unrealistic without specialized
hardware. Normal mode analysis (NMA) provides an alternative.
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It is a computational approach that predicts vibrational frequencies
and movements of a system around an equilibrium state using a
harmonic potential. The fundamentals of NMA have been exten-
sively reviewed [37, 38] and classically is applied on all atoms of the
structure with a molecular dynamics force field after initial minimi-
zation. Pioneering work by Tirion [39] showed that it is possible to
reproduce the slow dynamics of proteins with a single-parameter
potential by considering the structure as already in its equilibrium
conformation and building a mass-spring system, removing the
requirement for minimization. Tama et al. [40] showed that it is
possible to replace all atoms of a residue by a single mass generally
centered at the position of the alpha carbon, drastically reducing
computational time. The speed of such coarse-grained NMA
methods made possible their use in many applications to explore
conformational space in small molecule docking [41, 42], to predict
conformational changes [43] and in structural refinement [44, 45].
However, most coarse-grained methods do not account for the
nature of amino acids by using spring constants that are indepen-
dent of residue type. We recently introduced a coarse-grained NMA
method called ENCoM [46], which uses a potential based on STeM
[47] considering bond stretching, angle bending, dihedral rotation,
and long-range interactions. Crucially, ENCoM adds an additional
factor to the long-range interactions using the surface area in con-
tact and the type of heavy atoms in contact. Thus, unlike other
coarse-grained NMA methods, ENCoM calculations are affected
by the specific amino acid nature of the protein in addition to its
structure. Compared to the Anisotropic Network Model (ANM),
one of the most used coarse-grained NMAmethods [48], ENCoM
shows an increased predictive power for conformational change
between crystal structures of bound and unbound enzymes with
an average increase in squared overlap of 28 % for 117 coupled
movements and 60 % for 236 cases of coupled loop movements.

With ENCoM, we also introduced a novel application for
coarse-grained NMA methods in the prediction of the effect of
mutations on protein stability and dynamic properties. Predicted
vibrational entropy differences (ΔSvib) upon mutation were ana-
lyzed for 303 manually curated mutations [49] and compared to
several existing methods, notably FoldX3.0 (beta 3.0) [50],
Rosetta [51], DMutant [52], and PoPMusic [49]. Although not
the overall best predictive method, ENCoM proved to be the most
self-consistent and least biased. ENCoM and DMutant gave the
best predictive power on the subset of 45 stabilizing mutations
versus other methods that predicted as good or worse than a
random model. Classic coarse-grained NMA models predicted
every mutation as neutral and did not have any predictive power.
The combination of ENCoMwith enthalpy-based methods such as
Rosetta and FoldX was synergistically beneficial [53]. As a proof of
concept for the prediction of the effect of mutations on function,
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ENCoM predicted the effect of the G121V mutation on E. coli
DHFR consistent with S2 differences NMR results [54]. Despite
having a modest effect on protein stability (0.77 kcal/mol [55])
and being 15 Å away from the binding site, this mutation disrupts
enzyme efficiency by 200-fold through allosteric effects. More
recently, ENCoM was used to show that thermophile proteins are
on average more rigid than their mesophile counterpart and used
ΔSvib to guide the selection of mutations observed between such
proteins with potential uses in protein engineering [22].

In the following sections, we demonstrate how to use ENCoM
to predict the effect of mutations on thermal stability and dynamics
as well as to generate conformational ensembles (Fig. 1). The
ability to perform large-scale combined predictions of the effect
of mutations on stability and dynamics offers great possibilities in
protein engineering. Likewise, the generation of biologically realis-
tic conformational ensembles has ample applications in protein
engineering and beyond.

Fig. 1 Uses of ENCoM in protein engineering. The wild-type nuclease from
Staphylococcus aureus (1EY0) used in the text is shown in (a). The protein
structure is represented as an elastic network model using ENCoM algorithm
(b), where amino acids are represented by masses (green spheres) and
interactions by springs (yellow sticks). The Eigenvectors representing the
seventh and tenth modes are shown in red and blue respectively. The mutation
T41I (shown as stick in c) increases the thermal stability and rigidifies the protein
in the regions identified in blue (c). A conformational ensemble of 11
conformations of the wild-type nuclease generated using the seventh and tenth
modes are shown in (d)
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2 Materials

For this tutorial it will be necessary to have some basic knowledge
of command line environments and to install software (seeNote 1).
At the moment ENCoM does not work under the Windows
operating system. Thus, for the tutorial below it is necessary to
use a Unix-based operating system (Linux or Mac OS). Please make
sure your system has up-to-date versions of Python and Perl.

The ENCoM Source code can be found at http://bcb.med.
usherbrooke.ca/encom or through GitHub at https://github.
com/NRGlab/ENCoM. Code can be compiled by the following
instructions in the Readme file (seeNote 2). ENCoM is used for the
prediction of the effect of mutations and to generate conforma-
tional ensembles. Precompiled executables of FoldX3 can be found
at: http://foldx.crg.es (see Note 3). FoldX3 is used exclusively for
the prediction of the effect of mutations. Instructions to download
and install Modeller can be found at https://salilab.org/modeller/
download_installation.html. PyMOL is used for molecular visuali-
zations. Instructions for installation on different operating systems
can be found at http://www.pymolwiki.org/index.php/Category:
Installation. Alternatively, the PyMOL source code can be found at:
http://sourceforge.net/projects/pymol (see Note 4). All scripts
required for the protocols used below can be found at http://
bcb.med.usherbrooke.ca/encom.

3 Methods

The evaluation of the effect of mutations on protein thermody-
namic stability is achieved by a linear combination of the predic-
tions of ENCoM and FoldX. The prediction of the effect of
mutations on protein dynamic on the other hand uses ENCoM
exclusively. ENCoM is also used to generate ensembles of realistic
protein conformations. The following protocols can be carried out
in standard computers and do not require any specialized hardware.
Execution times can vary from a few minutes to a few hours
depending on the type of hardware used, the size of the protein,
and the number of mutations to evaluate or conformations to
generate. The entire protocol can also be automatically executed
through the ENCoM Server [53] at http://bcb.med.usherbroke.
ca/encom. The advantage of running oneself the protocols is to
overcome restrictions that are in place in the ENCoM Server such
as the possibility to model and predict the effect of double (or
more) mutants, the manner in which conformations are modeled
using Modeller, and to explore combinations of modes that gener-
ate larger conformational ensembles than allowed in the web-
server. Results obtained through the ENCoM Server interface can
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serve to validate results obtained using the protocols below as the
user learns how to use ENCoM.

We will be using the structure of the Staphylococcus aureus
Thermonuclease (PDB ID 1EY0) as an example. However, any
protein structure or model can be used (see Note 5).

During the protocol, we will be using software that can be
installed in different directories depending on the computer. The
FoldX3 installation folder will be referred to as FoldX/, ENCoM
installation folder will be referred to as ENCoM/, and the perl and
python scripts will be referred to as script/. The user should make
sure to recognize what are the appropriate directories in their
installation and replace the names accordingly. Text in italic follow-
ing the > symbols represent command lines that are to be entered
in a terminal.

3.1 Preparing

Working Environment

In order to run ENCoM, is it better to create a work directory
within which we will place the PDB formatted file containing the
coordinates of the protein and prepare it:

1. Create a folder named work in which you will be working and
change the working directory:

> mkdir work

> cd work

2. Download the 1EY0 structure from the PDB website using this
address http://www.rcsb.org/pdb/files/1EY0.pdb and name
it 1ey0_nc.pdb; alternatively, use the command line below:

> curl http://www.rcsb.org/pdb/files/1EY0.pdb >

1ey0_nc.pdb

3. Clean the PDB file by removing heteroatoms, water molecules,
alternative conformations, and hydrogen atoms, changing neg-
ative residue numbers or residues with non-numeric characters,
removing multiple models and adding a chain identifier Z if
none is present using this command (see Note 6). The cleaned
structure is now called 1ey0.pdb.

> perl script/clean_pdb.pl 1ey0_nc.pdb 1ey0.pdb

3.2 FoldX3 Thermal

Stability Predictions

Thermal stability predictions involve a linear combination of
FoldX3 predictions and ENCoM. ENCoM. As noted above, users
must download FoldX3 and install it first. Once this is done follow
the steps below:

1. In order to preprocess the protein structure we start with the
following command

> echo 1ey0.pdb > list.txt
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2. Copy the rotabase.txt file found within the FoldX3 software
into the working directory:

> cp FoldX/rotabase.txt ./

3. Launch FoldX3 repair function. This will generate a file named
RepairPDB_1ey0.pdb.

> FoldX/foldx3b6 -runfile ./script/repair.txt

4. Write this filename in a list using

> echo RepairPDB_1ey0.pdb > list.txt

5. Open the file named individual_list.txt using any plain text
editor (in the following command line we use nano) and write
mutations that are to be evaluated using the following nomen-
clature: One letter code wild-type residue, chain, position in the
structure sequence, and one letter code mutated residues, fol-
lowed by a semicolon. For example, tomutate threonine 41 to an
isoleucine in the 1EY0 structure, writeTA41I;. For this protocol,
please write in the individual_list.txt file on different lines the
two following mutants: TA41I; andDA21K; (seeNote 7).

> nano individual_list.txt

6. Launch the FoldX3 mutation function. The file Dif_BuildMo-
del_RepairPDB_1ey0.fxout created in the working directory
will have the difference in folding energy between WT and
mutated forms (see Note 8).

> FoldX/foldx3b6 -runfile script/run.txt.

3.3 Effect

of Mutations on

Protein Stability

and Dynamics

The ENCoM predictions can then be calculated as follows:

1. Generate the structure of the T41I and D21Kmutants in chain
A with the following command lines, where 1ey0 represents the
filename, 41 or 21 the positions to mutate, ILE or LYS the new
residues at these positions in chain A. The resulting modeled
mutant structures will be in files 1ey0ILE41A.pdb and
1ey0LYS21A.pdb. In the command line below, the last two
arguments represent the input PDB file containing the wild-
type coordinates and the filename for the mutant coordinates
respectively.

> python script/mutate_model.py 1ey0 41 ILE A 1ey0.pdb

1ey0ILE41A.pdb

> python script/mutate_model.py 1ey0 21 LYS A 1ey0.pdb

1ey0LYS21A.pdb

2. Calculate the normal modes and mode amplitudes for the wild-
type andmutant structures generated in the previous step using
the following command. The .cov files represent the entropy for
each residue and the .eigen files contain the eigenvalues (mode
frequencies) and eigenvectors (normal modes) of the different
vibrational modes. These files will be used to compare dynam-
ics between structures (see Note 9).

Normal Mode Analysis in Protein Engineering 209



> ./ENCoM/bin/build_encom -i 1ey0.pdb -cov wt.cov -o

wt.eigen

> ./ENCoM/bin/build_encom -i 1ey0ILE41A.pdb -cov

TA41I.cov -o TA41I.eigen

> ./ENCoM/bin/build_encom -i 1ey0LYS21A.pdb -cov

DA21K.cov -o DA21K.eigen

3. The following command will use the files produced above to
calculate the differences in dynamics between each mutant and
the wild type, as well as the predicted ΔΔG for each mutation.
The predicted ΔΔG is a linear combination of ENCoM and
FoldX calculated earlier (seeNote 10). The order of .cov files for
the -mutl argument must be the same that the one in indivi-
dual_list.txt.

> perl script/compare_cov.pl -FoldX Dif_BuildModel_-

RepairPDB_1ey0.fxout -wt wt.cov -mutl TA41I.cov DA21K.

cov.

4. The command script will generate a PyMOL session script
called Diff.pml that colors every amino acid in function of ΔS
for residue in each mutant, where blue represents a rigidifica-
tion of the structure and red a gain in flexibility (see Note 11).
It can be viewed using:

> pymol Diff.pml

3.4 Generation of

Conformational

Ensembles

In addition to the prediction of the effect of mutations on stability
and dynamics, ENCoM can be used to generate conformational
ensembles:

1. The following script generates multiple conformations using
ENCoM. In the case below, we are using the wild type and use
the eigenvectors previously calculated in Subheading 3.3, step
2 (file wt.eigen). The same could be done for a mutant, using
the appropriate mutant structure and calculated eigenvectors.
The file all_conformations.pdb contains all the exhaustively
generated models using the 10th and the 12th slowest vibra-
tional modes (parameter –ml) with a maximum RMSD distor-
tion of 2 Å (parameter –md) and a minimum RMSD distortion
of 1 Å (parameter –step) per mode. Remember that the first six
modes represent rotations and translations; thus, the smallest
value for any argument passed via –ml should be 7, represent-
ing the slowest, most global mode of movement.

> ENCoM/bin/build_grid_rmsd -i 1ey0.pdb -ieig wt.eigen

-md 2 -step 1 -p all_conformations.pdb -ml 10 12

2. Each individual mode can be viewed using the motion func-
tion. For example, the mode 10 can be given by

> ENCoM/bin/motion -i 1ey0.pdb -m 10 -ieig wt.eigen -

p motion_10.pdb
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3. Cartesian space NMA methods such as ENCoM generated
conformations that are linear combinations of movements
(translations of atomic coordinates) along different modes.
Thus, the structures generated do not respect bond angles
and distances. Conformations represent distorted physically
unrealistic structures. Modeller is used to rebuild physically
realistic structures using each distorted NMA structure as a
template. The rebuilt model will be found in the folder called
models. This is done with the command below.

> perl script/rebuild.pl -i all_conformations.pdb -

script script/rebuild.py

4 Notes

1. All software employed in the protocols are free at least for
nonprofit users. ENCoM is free for everyone and distributed
under the GNU General Public License.

2. Users need to have the GNU GSL library installed, more
information can be found at http://www.gnu.org/software/
gsl/.

3. FoldX is developed and maintained by the research group of
Dr. Luis Serrano at the GRG. Users need to make an account
and accept a yearly-renewable Licence. FoldX needs to be
downloaded anew every year to work with the newly renewed
license.

4. Homebrew installation is recommended for Mac OS, particu-
larly for Mac OS 10.10 Yosemite. Binary distributions are
recommended for Linux.

5. Experimentally determined protein structures can be found on
the PDB depository (http://www.rcsb.org/). If the desired
structure is not available, servers such as I-Tasser or Robetta
can be used to generate homology models. It is important to
note that PDB X-ray structures represent the asymmetric unit
that may or may not correspond to the biological unit (quater-
nary structure). Users can download experimentally verified or
predicted biological units from any of the PDB depositories.

6. Alternatively, you can manually curate your PDB file by analyz-
ing the structure in PyMOL, making modifications and saving
the modified structure or by editing the file directly in a text
editor.

7. Multiple mutations can be specified by separating them with a
comma in the same line, i.e., TA41I,DA21K; will evaluate a
double mutant whereas if these two mutations appear in indi-
vidual lines, two single mutants will be predicted.
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8. This is a relative score representing the ΔΔG of folding; nega-
tive values are associated with stabilizing mutations.

9. The first six modes are rotation and translation modes. They
should not be considered.

10. Energy is calculated as previously done [22, 46, 53] with
higher values corresponding to more rigid structures.

11. The colors are scaled by the maximum absolute difference or
three times the standard deviation, whichever is smaller.
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