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Protein Folding in Contact Map Space
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(Received 25 June 1998)

Changing a few contacts in a contact map corresponds to a large scale move in confrontation
hence, one gains a lot by using the contact map representation for protein folding. We develop
efficient search procedure in the space of physical contact maps, which could identify the native f
of the lowest free energy, provided on had a free energy function whose ground state is the native
We prove rigorously that the widely used pairwise contact approximation to the free energy ca
stabilize even a single protein’s native map. Testing the native map against a set of decoys obtai
gapless threading, one may be misled to the opposite conclusion. [S0031-9007(98)08231-3]

PACS numbers: 87.15.By, 87.10.+e
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One of the most challenging open problems in comp
tational physics, chemistry, and biology is that ofprotein
folding; e.g., to predict the conformation of a polypeptid
chain from its amino acid sequence. The solution of th
problem will have a far reaching impact on our understan
ing the function of biologically active macromolecules, a
well as on practical problems of central importance, su
as drug design. The number of sequenced proteins (ab
170 000) is increasing steeply [1], while the structure h
been determined only for a few thousand. Since this gap
expected to widen considerably as a result of concentra
sequencing efforts, theoretical attack on the folding pro
lem is a most timely undertaking. A conceptually straigh
forward attempt to solve the protein folding problem is t
construct, for any given molecule, an energy function u
ing the interatomic potentials and look for its minima, o
use molecular dynamics, integrating Newton’s equatio
at an energy corresponding tokT . Such a direct attack on
the problem is unrealistic, partly because solving the d
namics for large molecules lies beyond the possibilities
existing computers and partly because the exact poten
is not known. Interest among physicists [2] covers vario
aspects of the problem, ranging from generally theoretic
issues, addressed by a variety of field-theoretical metho
[3], to developing numerical methodologies [4], suitab
for folding specific real proteins [5]. The issues raise
include dynamic aspects of the folding process [6,7], d
termining factors that govern thermodynamic stability o
the native fold [8] and its stability against mutations [9
etc. Every realistic effort aimed at answering any speci
question must use some energy function. The exact
tential that governs the folding process is not known [10
One is looking for classical effective interactions betwee
atoms; furthermore, folding takes place in the presence
water and the water molecules must be “integrated ou
Hence, one needs approximate, coarse grained, or redu
representations of protein structure and of the correspo
ing freeenergy.

A large fraction of recent numerical work in the physic
literature uses pairwisecontact potentialsto represent the
0031-9007y99y82(3)y656(4)$15.00
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energy of a particular conformation [5,11]:

H pair sS, Ad ­
NX

i,j

Sijwsai , ajd . (1)

Here,A ­ sa1, a2, a3, . . . , aN d denotes the sequence of a
protein ofN residues;ai is one of the letters of a 20-letter
alphabet, identifying the amino acid at positioni along
the chain. Thecontact mapS is anN 3 N matrix whose
elements are either 0 or 1;Si,j ­ 1 if residuesi and j
are in contact or 0 if not. Since we identify [12] physica
structures by their backbone conformation, we define tw
residues to be in contact by the distance between theirCa

atoms (we used the thresholdRc of 8.5 Å).
The choice of the 210 contact energy paramete

wsa, bd varies from the simplest binary valued HP mode
[13], through values selected from random distribution
[6], to knowledge-based determination that uses da
available from the Protein Data Bank (PDB) [14]. Thes
methods employ either quasichemical approximation
[5,15,16] or optimization of, for example, the Z scores o
the native folds with respect to an ensemble of decoy
[17–19]. Attempts were made to fit the contact parame
ters obtained this way to simple forms from which variou
conclusions about the potential can be drawn [20].

Since the contact map of a protein is independent of th
coordinate frame used, contact maps are convenient
protein structure comparisons and forsearching a limited
databasefor similar structures. A more challenging pos-
sibility was proposed recently [5]: to use the contact ma
representation forfolding, e.g., to search the space of con
tact mapsfor the map that corresponds to the native fold
The main computational advantage of this strategy is th
changing a few contacts in a map induces rather significa
large-scale coherent moves of the corresponding polype
tide chain [21]. Given all the inter-residue contacts or eve
a subset of them, it is possible to reconstruct quite well
protein’s structure [12,22].

In this work, we reinterpretH pair ; rather than viewing
it as the energy, it plays the role of a simplest phenomen
logical approximation to the “true”freeenergy of a protein
© 1999 The American Physical Society
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with a given contact map. With this in mind, the native
map must be identified as the one with the highest prob
bility of appearance and, hence, of the lowest possible fr
energy. Clearly, if the global minimum of an energy func
tion is not at (or near) the native fold, an efficient energ
minimization will mislead us to a wrong structure.

In this work, we take the first step in an attempt t
determinewhich potentials are capable to be tuned so tha
they have their minimum at the native map,S0. Whether
H pair is a good enough approximation to play the role o
the function whose minimization yields the native fold o
proteins is not clear at all. Hence, it is natural to pose
well defined question regarding the ability of the pairwis
contact approximation (1) to predict correctly the nativ
fold of even a single protein. In other words, we as
the following: Is it possible to find a set of 210 contac
parameterswsa, bd such that

H pairsS0, A, wd , H pairsSm, A, wd ; m , (2)

i.e., the energy ofS0, the native contact map of a protein
is lower than all other mapsSm? We proved [23] that
the answer to this question isnegative. This means that
simple approximations to the contact free energycannot
be used to identify the native map of a protein.

It is impractical to construct all of theOseaN d physical
contact maps of a chain of lengthN . Therefore the native
map can be tested only against a relatively small numb
of decoys, and the answer to our question will depen
on the competing conformations that were generated. F
example, for “low quality” decoys obtained bythreading
the answer is positive not just for a single protein; rathe
we can stabilize simultaneously the native mapsS

p
0 of

p ­ 1, . . . , Mp proteins, each against all of its decoysS
p
m

obtained by threading, i.e.,

H pairsSp
0 , Ap , wd , H pairsSp

m, A, wd ; p, m . (3)

This result holds [24] for (typically)Mp , 100 and for
7.5 , Rc , 15 Å. To avoid being misled to a positive
answer to the question (2), it is essential to test the nat
fold against “hard” candidate contact maps. Generati
such decoys is far from easy. To produce them, w
developed an efficient way to explore the space of conta
maps. Executing moves in the 3D conformation space
chains is inefficient; on the other hand, moves made in t
space of contact maps give rise to a major difficulty, in th
such moves usually lead to nonphysical maps. To ma
sure that our candidate maps arephysical,e.g., correspond
to real Ca chain conformations, we used a previousl
developed algorithm to project maps generated by o
search procedure onto the subspace of physical maps [1

Once a large set of hard candidate maps is assemb
for a single protein, we answer the question by searchi
for contact energieswsa, bd, for which (2) holds for all
decoys. This search is done byperceptron learning.
The version of the perceptron learning rule that we u
signals when the training set is unlearnable, meaning,
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the present context, that such a set ofwsa, bd does not
exist. This was found to be the case when we tried
“learn” contact parameters that stabilize the native fold
crambin against a large set of decoys. We present n
our work in more detail.

Free energy.—Denote byC a microstate of the system
(of the chain, the water molecules, etc.); since ma
microscopic conformations share the same contact m
S, it is appropriate to define afree energyH sS, Ad
associated with this sequence and map:

ProbsSd ~ e2H sS,Ad ­
X
C

e2s1ykTdEsC dDsC , Sd , (4)

whereDsC , Sd ­ 1 if S is consistent withC andD ­ 0
otherwise; the “projection operator”D ensures that only
those configurations whose contact map isS contribute to
the sum (4) (note that summation over positions of wa
and other solvent molecules is also implicit).EsC d is the
unknown true microscopic energy.

Since it is impossible to evaluate thisexactdefinition of
the free energy of a map, we resort to a phenomenolog
approach, guessing the form ofH sS, Ad that would have
been obtained had the sum (4) has been carried
H pair of Eq. (1) is a simplest approximation to the tru
free energy. To test the extent to which this approxima
form is capable of stabilizing the native map of a prote
against other non-native maps, we must assemble a s
such decoys.

Generating decoys by threading.—The simplest way
to generate candidate contact maps is by “threading
chain of lengthNp through the (known) configuration o
a longer chain, of lengthNq. In the context of contact
maps, this amounts to cutting outNp 3 Np submatrices
that lie along the diagonal of the larger map, yieldin
Nq 2 Np 1 1 decoys for the shorter chain. Since ea
of these submatrices is a map of a segment of lengthNp

of a real protein, it is guaranteed to represent a phys
Ca chain. We assembled a set of 153 proteins [24];
every proteinp of the set, we generated from the PDB i
native contact mapS

p
0 , as well as a set of candidate map

(decoys), generated bythreading it into every member
of the set whose lengthN exceedsNp. This simple
method has an obvious deficiency; the candidate map u
a structure which was “tailored” for the sequence of
segment of the longer protein and may not fit at all th
of the shorter one. Hence, in general, the resulting m
albeit physical, will not yield a low energy when used
Eq. (1).

Generating low energy decoys.—We have presented
elsewhere [12,21] athree-stepMonte Carlo method to
generate physical maps of low energy, which we su
marize briefly.

In the first step, we perform nonlocal moves, updati
“clusters” of contacts in an existing map. These cluste
represent eithera helices orb sheets (parallel or antipar
allel), or small groups of contacts between amino ac
657
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that are well separated along the chain. The “energy”
the resulting coarse map is evaluated and a low ener
map is retained. This map is refined in the second step
local moves in which contacts that are in the vicinity o
existing ones are turned on or off (mostly one at a time
Only moves that lower (or do not significantly raise) th
energy are accepted. In the third step, which takes m
of the computer time, we deal with the major problem o
ensuring that we stay in the subspace of physical ma
[12]. A string of beads that represents the backbone
the polypeptide chain is moved around without tearing th
chain and without allowing one bead to invade the spa
of another. The motion of this string is controlled by
“cost function” which vanishes when the contact map o
the string coincides with that of the target map that wa
produced by the second step. The cost increases w
the difference between the two maps increases. This p
cedure ends up with a chain configuration whose conta
map is physical by definition and close to the target ma
Thus we are able to efficiently “project” any map that w
have generated in the first two steps onto the subspace
physical maps.

The contact maps obtained by this procedure ha
nativelike average radius of gyration and number o
contacts. A serious shortcoming of theCa representation,
which applies both to gapless threading and to lo
energy decoys, is that, even for a physicalCa trace, an
attempt to fit in side chains may result in violations o
steric constraints and bond angle. Thus, our definition
physicality means only that theCa chains are realizable.

For the reason explained above, the maps obtain
by our search procedure are of much lower energy th
those obtained by threading. This can be seen in Fig.
which presents histograms of the energies of two famili
of decoys for crambin. One family was obtained by
threading and the other by searching for low energy map
using in (1) different contact potentials from the literature
Evidently the decoys obtained by threading are of muc
higher energy, with only a small fraction below the nativ
one. On the other hand, all maps obtained by our sea
have significantly lower energies than the native on
Therefore, finding a set of contact parameters for whic
(2) holds for all maps of this set constitutes a much mo
difficult challenge than doing the same for the threadin
ensemble.

Learning the contact energy parameters.—The an-
swers quoted above regarding the existence of contact
ergy parameters that satisfy the set of conditions (2) or (
were derived by perceptron learning.

Note that for any mapSm the energy [Eq. (1)] islinear
in the parametersw; therefore the conditions (3) and (2)
are linear as well. The difference between the energy
a decoy map and the native one can be written as

DHm ­
210X
c­1

fNcsSmd 2 NcsS0dgwc ~ w ? xm , (5)
658
of
gy
by
f
).
e
ost
f
ps
of
e

ce
a
f
s

hen
ro-
ct
p.
e

of

ve
f

w

f
of

ed
an
1,

es

s,
.
h

e
rch
e.
h

re
g

en-
3)

of

FIG. 1. Histograms that demonstrate the difference in energ
between ensembles of contact maps obtained by threading a
by energy minimization, shown for different contact energy
parameters: VND: as obtained in this work, by finding a
solution for a threading ensemble; HL: Ref. [16]; MD: [5];
MJ: [15]; MS: [18]; TD: [19]. The energy parameter sets were
shifted and rescaled to obtainkwl ­ 0 and kw2l 2 kwl2 ­ 1
(averages are over the 210 energy parameters). Energies w
shifted to set the native state toE ­ 0.

where NcsSmd fNcsS0dg is the total number of contacts
of type c ­ 1, 2, . . . , 210 that actually appear in mapSm

fS0g, and we denoted byxm the normalized vector of
contact differences. Thus the conditions of Eq. (2) tak
the form

w ? xm . 0 ; m . (6)

Perceptron learningis a standard procedure to look for
a set of w that satisfies such linear inequalities for al
m ­ 1, 2, . . . , P “examples” that constitute the “training
set.” The examplesm are presented sequentially; after
presentation of examplem for which w ? xm , 0, the
following update takes place:

w 0 ­ sw 1 hxmdyjw 1 hxmj . (7)

The perceptron learning procedure is guaranteed to co
verge [25] to a solutionwp of (6), if one exists. By setting
the value of the parameterh according to a learning rule
that was introduced in Ref. [26], we are able to detect th
the training set is unlearnable;e.g., there are no contact
parameters that stabilize the native map against all of t
decoys. This is done by evaluating, as we learn, a m
notonously increasing quantityd calleddespair; if d ex-
ceeds a critical valuedc [24] before a solution is reached,
the problem is unlearnable.

Results for threading.—Our database contained
153 proteins. Using the perceptron learning techniqu
presented above, we proved that there is no set of cont
energy parameters that can satisfy Eq. (3) when all of th
possible 1 248 667 decoys obtained by gapless thread
are used simultaneously. On the other hand, for a typic
randomly drawn subset of 100 proteins, a set of conta
parameterscanbe learned.
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Results for low energy maps.—Crambin is a protein of
lengthN ­ 46, composed of 15 kinds of amino acids, o
which three appear only once. Hence, only 117 of the t
tal number of 210 possible contacts can actually appe
for any fold of crambin. In an unlearnable case, there e
ist sets of examples for which no solution can be foun
for large enoughP the training set will include, with non-
vanishing probability, such an unlearnable subset. F
M ­ 117, the critical despair is [26]dc . 10163. We
had to generate, by our search procedure discussed ab
p ­ 298 710 examples to obtain an unlearnable set. O
of these, we identified a hard subset of 10 000 exampl
which we tried to learn. dc was reached after about
37 500 learning cycles; the problem is unlearnable. R
peating the learning procedure using only decoys with le
contacts than native crambin does not change the conc
sion. We have repeated the same procedure for a se
six immunoglobulines (8fab, 1baf, 1cbv, 1dba, 2f19, 2fd
which we attempted to stabilize simultaneously. For th
problem M ­ 210, and again we proved unlearnability
(details will be presented elsewhere).

We demonstrated that it is impossible to parametrize
simple potential in a way that guarantees that thenative
fold is the state of lowest energy even for a single protei
a good search procedure identifies lower energy deco
which arevery differentfrom the native map. One should
not be mislead by similar work [27] on model proteins
in which a database of foldable sequences is design
using a contact potential and subsequently a set of cont
energy parameters is recovered. Success in this cas
possible because the contact energy of Eq. (1) is theexact
form of the free energy of the model.

There are at least two possible directions to explor
(i) Controlled inclusion of additional energy terms, suc
as hydrophobic (solvation), hydrogen bond, or multibod
interactions may help to attain foldability. We believe
that the optimization scheme presented here will allow
step-by-step improvement of the energy function. (ii) W
have also found evidence that, although the overall fo
of crambin remains elusive with our optimized contac
potential, partial success is obtained on a smaller sca
either identifying long range contacts or local structura
features. Whether we will be able to use these advanta
to improve the predictive power of some novel method o
identifying structure remains to be seen.

We are grateful to Ron Elber for discussing with us
similar approach, based on Eq. (5) (unpublished). Th
research was supported by grants from the Minerva Fou
dation, the Germany-Israel Science Foundation (GIF), a
by a grant from the Israeli Ministry of Science.
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